SUMMARY
Introduction Pickwickian syndrome (PS), also known as hypoventilation syndrome in adults, consists of three factors: obesity (Body Mass Index (BMI) > 30 kg/m²), daytime hypercapnia and sleep-disordered breathing, after ruling out other disorders that may cause alveolar hypoventilation. Timely recognition of PS is of utmost importance because such patients have significant morbidity and mortality. However, recent data indicate that PS is under-recognized and under-treated. We report a case of early-identified PS prehospital with a favorable outcome after hospital treatment.

Case outline A 67-year-old female patient was diagnosed prehospital, and the diagnosis was later confirmed in hospital. Diagnostic criteria were as follows: BMI > 45.7 kg/m² (height 170 cm, weight 132 kg), hypercapnia, hypoxemia and respiratory acidosis (pCO₂ – 41 mmHg, pO₂ – 56 mmHg, pH 7.45) in the absence of other causes of hypoventilation. During hospitalization, the following diagnostic procedures were performed: standard laboratory analyses, chest radiography, electrocardiography, abdomen and heart echocardiography. An attempted sleep study (polysomnography) was interrupted due to a drop in oxygen saturation levels. Non-invasive mechanical ventilation and a diet were used as the first line of therapy. However, due to the development of a global respiratory insufficiency, the patient was intubated and placed on a mechanical ventilator. After 30 days of hospital treatment, the patient was released in a satisfactory general condition with recommendations for weight reduction and symptomatic therapy.

Conclusion As obesity is becoming an epidemic of modern society, early recognition and treatment of PS is of crucial importance.

Keywords: obesity; Pickwick syndrome; early recognition; treatment

INTRODUCTION

The increase in the prevalence of extreme obesity in the last decade is a health, economic and demographic problem of global proportions. Overweight and obesity cause 3.4 million deaths a year [1]. Classification of obese adults based on body mass index (BMI) (obese class I: BMI 30–34.9; obese class II: BMI 35–39.9; obese class III: BMI ≥ 40) and relative risk assessment of morbidity (elevated, moderately elevated and highly elevated) was made by the World Health Organization in 1997. [2]. According to the results of the 2013 Health Survey in the Republic of Serbia, based on the measured BMI, more than half (56.3%) of the population was overweight (35.1% pre-obese and 21.2% obese) [1]. The average BMI value in the adult population of Serbia is 26 ± 4.74 kg/m².

Among the many complications of obesity, respiratory tract disorders are in the shadow of metabolic and cardiovascular complications, so they have been extremely rarely mentioned in our surroundings [3]. Types of respiratory disorders in obese people may be different:

1. respiratory function disorders without alveolar hypoventilation;
2. obesity hypoventilation syndrome (OHS);
3. obstructive sleep apnea syndrome (OSAS);
4. risk during and after surgical interventions [3].

OHS, also historically described as the Pickwickian syndrome (PS), is defined as daytime hypercapnia and hypoxemia (PaCO₂ > 45 mmHg and PaO₂ < 70 mmHg at sea level) in an obese patient (BMI > 30 kg/m²) with sleep-disordered breathing in the absence of any other cause of hypoventilation [4]. OHS is a diagnosis of exclusion. Other causes of hypoventilation, such as chronic obstructive pulmonary disease, severe interstitial lung disease, mechanical respiratory limitation (for example, chest wall disorders such as kyphoscoliosis), myopathies (such as myasthenia gravis), neurological diseases, central causes (such as cerebrovascular disease and untreated hypothyroidism), and congenital causes (such as Ondine’s syndrome), should be ruled out. OHS often remains undiagnosed until late in the course of the disease. Its exact prevalence is unknown, but it has been estimated that 10–20% of obese patients with obstructive sleep apnea have hypercapnia [5]. Early recognition is important because these patients have significant morbidity and mortality. Effective treatment can lead to significant improvement in patient outcomes, underscoring the importance of early diagnosis and early treatment [6].

We report a case of prehospitaly identified PS with a favorable outcome after hospital treatment.
CASE REPORT

An emergency medical service team intervened because of severe choking of a 67-year-old female patient. She lived alone. The emergency medical service doctor found that the patient is extremely centrally obese (android type), BMI 45.7 kg/m² (height 170 cm, weight 132 kg), moving with difficulty. In medical history, the patient previously stated difficulties breathing, worsening in the lying position, fatigue even during minor activities, as well as all-day drowsiness. The problems have been more pronounced over the previous seven days. Furthermore, she has urinary incontinence and “swollen stomach”. The patient treats hypertension with fosinopril, which she takes irregularly.

On examination, the patient is mildly somnolent (Glasgow Coma Score 13), oriented, afebrile, dyspnoic (respiratory noise above the lungs, crackles basal left, oxygen saturation (SaO₂) 44%. Heart rate was rhythmic, sounds somewhat quieter. Blood pressure was 160/90 mmHg. The palpation of internal abdominal organs was difficult due to pronounced obesity. No peripheral edema. Electrocardiography (ECG): sinus rhythm, heart rate 110/min., S wave in D1 and from V1 to V6, without acute changes in the ST segment. Hundred-percent O₂ is applied through an oxygen mask at a dose of 6 L/min. The patient was transported to hospital under the diagnosis of suspected PS.

On admission to hospital, the patient’s status remained unchanged, with slightly corrected SaO₂ (58%). Gas analyses with no oxygen therapy when awake were: pO₂ 56 mmHg, pCO₂ 41 mmHg, pH 7.45. Due to the development of a global respiratory insufficiency (pO₂ 34 mmHg, pCO₂ 67 mmHg, pH 7.24) and the need for ventilatory support, the patient was moved to the Respiratory Unit. She is initially connected to non-invasive mechanical ventilation. Because of inefficient gas exchange, the patient was intubated and placed on a mechanical ventilator. After being stabilized, the patient was extubated, connected to non-invasive mechanical ventilation and then put on oxygen therapy.

Table 1 shows diagnostic procedures performed during hospitalization. Laboratory test results are shown in Table 2.

The treatment included: therapeutic diet (very-low-calorie diet), crystalloid infusions, electrolytes, antibiotics (ceftazidime, moxifloxacin, vancomycin), anticoagulants (low-molecular-weight heparin, then oral), angiotensin converting enzyme inhibitors, Ca antagonists, gastrointestinal agents and other symptomatic and supportive therapies.

Due to paroxysms of atrial fibrillation (Figure 1), amiodarone was included. The patient was converted to sinus rhythm with occasional paroxysmal atrial fibrillation.

After 30 days of hospital treatment, the patient was released in a satisfactory general condition with recommendation of the following therapy: lifestyle interventions (dietary changes and physical exercise), amiodarone 200 mg 1 × 1 (five days), enalapril 10 mg 2 × 1, amlodipine 5 mg 1 × 1, furosemide 40 mg 1 × 1 with 1 gr KCl, acenocoumarol 1 × 1/2 until international normalized ratio medical check-up (goal international normalized ratio between 2 and 3), pantoprazole 20 mg 1 × 1. The patient had scheduled appointments with a pulmonologist and a cardiologist 15 days after hospital release, and glyceremia and Hemoglobin A1c tests after a month.

DISCUSSION

A high suspicion of PS is critical for setting the PS diagnosis [7]. Our patient fulfilled the clinical criteria (SpO₂ 44%, dyspnea on exertion, but also at rest, in unbecoming and uncomfortable positions of the body, facial plethora, elevated level of bicarbonates in the blood). According to

<table>
<thead>
<tr>
<th>Table 1. Diagnostic test and results</th>
</tr>
</thead>
<tbody>
<tr>
<td>Diagnostic test</td>
</tr>
<tr>
<td>Chest x-ray</td>
</tr>
<tr>
<td>Echocardiographic examination of the heart complicated by the constitution.</td>
</tr>
<tr>
<td>Abdominal echocardiographic examination</td>
</tr>
<tr>
<td>Polysomnography</td>
</tr>
</tbody>
</table>
some data, targeted anamnesis and/or heteroanamnesis have a high sensitivity of 90–100%, but significantly lower specificity: 50–70% [8]. Obesity per se leads to a greater likelihood of diseases such as systemic arterial hypertension, diabetes, dyslipidemia, and hypothyroidism [4]. Additional questions are directed towards sleep, snoring, daily somnolence, possible cyanosis, and pulmonary and cardiovascular symptoms. In physical examination, respiratory noises are mostly reduced due to a thick layer of subcutaneous tissue on the thorax. In uncomplicated cases, early inspiratory basal crackles can be detected (in our patient on the left side). Heart tones are usually quiet, but during the aggravation of the illness, there may be arrhythmia. The ECG finding in our patient indicates an atrial fibrillation that has been arrested with amiodarone. Frequent finding is arterial hypertension due to obesity, smoking, hypoxemia (in our case SaO₂ was 44%), and other factors. Evidence of right ventricle enlargement from pulmonary hypertension that complicates advanced OHS may be seen on ECG and echocardiogram [9].

History and examination cannot diagnose OHS alone, but it requires the demonstration of daytime hypercapnia [5]. Certain laboratory results complete the anamnesis and physical examination [elevated serum bicarbonate (> 27 mEq/L), hypercapnia (arterial pressure of carbon dioxide PaCO₂ > 45 mmHg), hypoxemia (PaO₂ < 70 mmHg), polycythemia]. Patients suspected of having OHS can initially be screened by pulse oximetry and by determination of serum levels of venous bicarbonate. SpO₂ values < 93% on pulse oximetry would be suggestive of hypoventilation. A serum bicarbonate level ≥ 27 mEq/L had a sensitivity of 92% and a specificity of 93% on pulse oximetry would be suggestive of hypoventilation. A serum bicarbonate level ≥ 27 mEq/L had a sensitivity of 92% and a specificity of 93%, justifying its use in screening [10]. A raised bicarbonate (> 27 mmol/L) or base excess (> 3 mmol/L) in the absence of another cause for a metabolic alkalosis in an obese individual with a PaCO₂ < 45 mmHg may be an early indicator of OHS,

Table 2. Laboratory test details

<table>
<thead>
<tr>
<th>Laboratory test</th>
<th>Result</th>
<th>Reference ranges</th>
<th>Laboratory test</th>
<th>Result</th>
</tr>
</thead>
<tbody>
<tr>
<td>WBC 3.9–10 × 10⁹/l</td>
<td>10.8</td>
<td>6.1</td>
<td>Urea 2.8–7.2 mmol/l</td>
<td>10.1</td>
</tr>
<tr>
<td>Neu 40–70%</td>
<td>84.7</td>
<td>70</td>
<td>Cre 53–124 µmol/l</td>
<td>158</td>
</tr>
<tr>
<td>Eo 0–6%</td>
<td>10</td>
<td></td>
<td>CK 26–192 U/L</td>
<td>2511</td>
</tr>
<tr>
<td>RBC 3.86–5.08 × 10¹²/l (women)</td>
<td>4.51</td>
<td></td>
<td>CKMB 24 U/L</td>
<td>66</td>
</tr>
<tr>
<td>Hgb 110–180 g/l</td>
<td>154</td>
<td></td>
<td>ALT 8–41 U/L</td>
<td>63</td>
</tr>
<tr>
<td>PLT 140–450 × 10⁹/l</td>
<td>189</td>
<td></td>
<td>AST 7–36 U/L</td>
<td>86</td>
</tr>
<tr>
<td>CRP < 5 mg/l</td>
<td>57.9</td>
<td>10.9</td>
<td>LDH < 241 U/L</td>
<td>353</td>
</tr>
<tr>
<td>TPI < 0.75 mmol/l</td>
<td>< 0.20</td>
<td></td>
<td>gGT 5–35 U/L (women)</td>
<td>122</td>
</tr>
<tr>
<td>Na 136–145 mmol/l</td>
<td>140</td>
<td></td>
<td>TP 66–81 g/L</td>
<td>1.36</td>
</tr>
<tr>
<td>Ca 2.25–2.75 mmol/l</td>
<td>1.9</td>
<td></td>
<td>Fe 8.9–30 µmol/l</td>
<td>7</td>
</tr>
<tr>
<td>K 3.5–5 mmol/l</td>
<td>5.2</td>
<td>3.7</td>
<td>UIBC 2</td>
<td>5–59 µmol/l (women)</td>
</tr>
<tr>
<td>HCO₃ 24–29 mmol/l</td>
<td>32</td>
<td></td>
<td>TiBC 49–75 µmol/l (women)</td>
<td>62</td>
</tr>
<tr>
<td>Glu 3.5–6.1 mmol/l</td>
<td>10.1</td>
<td>5</td>
<td>Pro BNP < 125 pg/ml</td>
<td>2800</td>
</tr>
</tbody>
</table>

Microbiological analysis

| Corynebacterium spp. – diphtheroids in the smear in the tip of the tubus |

Urine culture sterile

Figure 1. Paroxysmal atrial fibrillation electrocardiography

![Paroxysmal atrial fibrillation electrocardiography](image)
warranting closer investigation [11]. We noted similarly. Blood tests are also recommended for the identification of hypothyroidism and polycythemia. A chest radiograph should be performed to exclude parenchymal lung disease, chest wall disease, asymmetrical elevation of a hemidiaphragm (diaphragm paralysis), and cardiomegaly.

The gold standard for diagnosing OSAS is polysomnography, which involves non-invasive measurement of vital parameters during sleep. According to published allegations 90% of PS patients have coexisting OSAS, however, due to unsuccessful polysomnography and missing heteroanamnesis (the patient lived alone), we were unable to confirm this theory [9]. Because symptoms are nonspecific, the diagnosis of PS is frequently delayed. It is commonly misdiagnosed as asthma or chronic obstructive pulmonary disease, and some patients are not diagnosed until hospitalization for acute-on-chronic respiratory failure occurs [12]. However, recent data indicate the OHS is under-recognized and under-treated [13].

In our case, the diagnosis of PS was based on: BMI > 45.7 kg/m², hypercapnia, hypoxemia and respiratory acidosis (pCO₂ 41 mmHg, pO₂ 56 mmHg, pH 7.45) in the absence of other causes of hypventilation. Comorbidities such as heart failure, coronary artery disease, and cor pulmonale are more common in patients with OHS, and the likelihood that such patients will require invasive mechanical ventilation or intensive care unit admission is also increased. Non-invasive positive airway pressure, together with weight loss are the initial first line therapies for patients with OHS [14, 15]. After a global respiratory failure had developed, our patient was intubated and placed on a mechanical ventilator. Mortality rate in PS is increased due to the respiratory and cardiac consequences of obesity as such.

It is critical for physicians to be able to recognize and treat obesity-associated diseases because obesity has become a national epidemic. OHS is still a poorly recognized entity in Serbia. Delayed diagnosis of OHS is associated with an increase in morbidity, mortality, and costs of care of patients who are more severely ill.

Informed consent

Written informed consent in Serbian was obtained from the patient for this case report publication, including the accompanying images, case history and data.

Conflict of interest: None declared.

REFERENCES

Пиквиков синдром – „врх леденог брега” код екстремно гојазних болесника

Јелена Кашћак, Слађана Анђелић
Градски завод за хитну медицинску помоћ, Београд, Србија

САЖЕТАК
Увод Пиквиков синдром (ПС), познат и као хиповентилацијони синдром одраслих, чини тријада: гојазност (Body Mass Index (БМИ) > 30 kg/m²), целодневна хиповентилација и поремећај дисања током спавања у одсуству алтернативних узрока алвеоларне хиповентилације. Благовремено препознавање ПС је од изузетног значаја јер овакви болесници имају знатан морбидитет и морталитет. Међутим, новији подаци указују на то да је ПС недовољно препознат и недовољно лечен. Приказујемо случај рано препознатог ПС на прехоспиталном нивоу са повољним исходом после болничког лечења.

Приказ болесника Шездесетседмогодишњој болесници постављена је прехоспитална дијагноза ПС, која је потврђена и у болници. Дијагностички критеријуми били су: БМИ > 45,7 kg/m² (висина 170 cm, маса 132 kg), хиперкапнија, хипоксемија и респираторна ацидоза (pCO₂ – 41 mmHg, pO₂ – 56 mmHg, pH 7,45) у одсуству других узрока хиповентилације. Током хоспитализације урађена су следеће дијагностичке процедуре: стандардне лабораторијске анализе, радиографија грудног коша, електрокардиограм, ультразвук срца и абдомена. Покушана студија спавања (полисомнографија) прекинута је због пада SaO₂ (засићеност крви кисеоником). Као прва линија терапије примењене су неинвазивна механичка вентилација и дијета. Међутим, због развоја глобалне респирацијске инсуфицијенције болесница је интубирана и стављена на механички вентилатор. После 30 дана болничког лечења отпуштена је кући у задовољавајућем општем стању са препоруком за редукцију телесне тежине и применом симптоматске терапије.

Закључак Гојазност постаје епидемија савременог друштва, те је од кључног значаја рано препознавање и лечење ПС.

Кључне речи: гојазност; Пиквиков синдром; рано препознавање; лечење